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A B S T R A C T

Nowadays, with the rapid development of digital image processing, there has been a notable increase in ela-
borating advanced tools for studying the internal structure of objects. This may be very helpful in characterizing
certain morphological traits of grains, as well as in quantifying the differences between them. The current
research was carried out to study the structure of the traits and to determine their importance in relation to grain
classification and identification. To achieve better performance and deeper understanding of their usefulness,
the investigation was done by means of both principal component analysis and multivariate factor analysis.
Herein, the percentage of variation explained by the first three factors reached a high 89.97%. Thus, the pre-
sented methodology supported reliable discrimination of the wheat varieties as regards their shape descriptors.
The conducted study confirmed the practical usefulness and effectiveness of the evolved method when applied to
the many practical tasks wherein the image analysis commonly employed in multivariate statistical methods is
recommended.

1. Introduction

Recent advances in information technology and in digital image
processing have resulted in the development and practical usage of
computer-aided techniques in data analysis. The three-dimensional
nature of computed tomography scanning allows the same object to be
scanned multiple times and provides an opportunity to investigate its
particle at any location within a sample. In the last few years, research
studies indicate that X-ray computed tomography provides an alternate
approach for the nondestructive measuring technique (Papadopoulos
et al., 2009; Peth et al., 2010). This is very useful in characterizing the
internal structure of objects and in quantifying their geometric features
(Charytanowicz, 2014; Charytanowicz and Kulczycki, 2014; Czachor
et al., 2015). In our research, the feature extraction method based on
the utilization of X-ray images is proposed to measure several grain
traits, hence, enabling their classification.

The identification of wheat grain requires some knowledge of their
characteristics. High classification accuracy can be obtained by using

kernel shape, color, length, and texture (Wiwart et al., 2012;
Zapotoczny, 2011). They are considered as major distinctions and can
be combined to construct the feature vector, which represents wheat
grain. In the previous studies on wheat classification morphology,
color, and texture were exploited for wheat variety recognition (Utku,
2000). Indeed, Majumdar and Jayas have suggested several different
approaches for classification cereal grains using different types of fea-
tures and their combinations (Majumdar and Jayas, 2000a, 2000b,
2000c, 2000d).

Various computer-aided systems based on morphological features
for the classification have been reported in literature (Guevara-
Hernandez and Gomez-Gil, 2011; Niewczas et al., 1995). The majority
of different features have involved the identification of grain varieties.
The key problem encountered in practice is a very large number of
variables. Still, when the dimensionality of the data increases, classifi-
cation problems become significantly harder. A high number of features
can lead to lower classification accuracy. Moreover, the amount of
computations required for classification increases exponentially with
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the growth of data dimension. On the other hand, a reduction of the
space dimensionality leads to a better understanding of a model and
simplifies the usage of different visualization techniques (Camastra,
2003). A main problem is identifying a representative set of features
from which a classification model for a particular task will be con-
structed. This addresses the problem of feature selection through a
correlation based approach.

A logical attitude for categorizing the traits requires the use of
multivariate statistical methods such as principal component analysis
and factor analysis. These methods basically reduce a high number of
variables to several components without a significant loss in classifi-
cation accuracy. These approaches also enable the user to detect and
explain correlations among variables. In addition, dimensionality re-
duction aims to reveal meaningful structures and guarantees to show
the genuine properties of the original data (Janecek et al., 2008; Tian
et al., 2010).

Vahid et al. (2011) has employed factor analysis to research the
relationship in totality of some quantitative traits with regard to wheat
grain yield under end drought stress via factorial split plot and on the
basis of completely randomized block design in three replications. In
this work, according to factor analysis, through decomposition to main
components, four factors altogether explained 83.51% of all variations.
The first factor was called the effective factor to yield. The second factor
was that of effective traits to spike characteristics. The third factor was
called the effective factor to plant height. Finally, the fourth factor was
called the effective factor to plant growth. Leilah and Al-Khateeb
(2005) have harnessed factor analysis and principal components ana-
lysis to study the relationship between wheat grain yield and its com-
ponents under the drought conditions. Herein, three main factors ac-
counted for 74.4% of the total variability in the dependent structure.
The results showed that biological yield, harvest index, weight of
grains/spike, spike length and number of spikes/m2 had the highest
communality, and, consequently, the high relative contribution in
wheat grain yield.

Furthermore, the accomplished studies showed that the digital
image processing techniques commonly applied in multivariate statis-
tical analysis give reliable results in recognizing wheat varieties. In the
previous paper (Charytanowicz et al., 2010), conducted in the earlier
stage of the research study, an effective gradient clustering algorithm
was proposed for wheat variety classification. This had resource to the
basic geometric features, including the kernel area, kernel perimeter,
compactness, kernel length, kernel width, asymmetry coefficient and
length of kernel groove, common to particular wheat grain varieties.
The presented procedure achieved an accuracy of about 92%. The
utility of the investigated methodology in the context of discrimination
by way of using the geometric features of wheat grain has been also
confirmed by the results of discriminant analysis. In the work
(Charytanowicz et al., 2016), the selected combination of geometric
features, including the kernel perimeter, compactness, asymmetry
coefficient, the ratio between the germ length and the kernel length, the
ratio between the germ area and the kernel area, and the ratio between
the kernel width and the kernel length, had significant contribution to
the discrimination, and such features have permitted discriminant
analysis to achieve a recognition rate of 89–96%. Moreover, in the
paper (Kulczycki and Łukasik, 2014), the problems of reducing data set
dimension and size were investigated. After the reduction process, the
number of wheat grains assigned to the right class was very high –
achieving almost 90%. Finally, the data set of wheat grain was used to
verify classification quality results for the probabilistic neural network
with simplified structure (Kowalski and Kusy, in press). The obtained
results confirmed the practical usefulness of the proposed methodology.

Thus, this paper demonstrate the utilization of grain geometric traits
in wheat variety recognition. The main objective of this work is to
determine a basic set of these parameters with respect to wheat grain
morphology. Both principal component analysis and multivariate factor
analysis are exploited to better comprehend the relations between

traits, as well as to identify effective factors in wheat grain classifica-
tion.

2. Materials and methods

The research was conducted at the Institute of Agrophysics of the
Polish Academy of Sciences in Lublin. For this work, we chose combine
harvested wheat grain of three varieties: Canadian, Kama, and Rosa.
Herein, the relationship between the different grain traits and their
effectiveness in grain classification were studied by way of utilizing two
multivariate statistical procedures which can be employed for structure
detection: principal component analysis and factor analysis (Basilevsky,
1994; Jolliffe, 2002; Morrison, 2005). Furthermore, the Pearson cor-
relation analysis was carried out for all analyzed variables (Draper and
Smith, 1981). The significant differences between mean values were
tested by analysis of variance and the Tukey's test.

2.1. Data acquisition

In our work, image processing methods were used to acquire the
data. In order to evaluate the quantitative traits of wheat grains, a high
quality visualization of the internal kernel structure was done through
the application of a soft X-ray technique. This is an objective, precise
and nondestructive method that is considerably cheaper than other
more sophisticated techniques such as magnetic resonance imaging,
scanning microscopy or laser technology. For each X-ray exposure,
grain kernels were evenly positioned groove down. The images were
obtained in the form of photograms at the scale of 5:1.

The photograms were then scanned by way of an Epson Perfection
V700 table photo-scanner that was equipped with a transparency
adapter, at 600 dpi resolution and 8 bit gray scale levels. This produced
bitmap graphics files with a sufficient resolution for reflecting distinct
features important for the proper characterization of objects.

Fig. 1 presents the exemplary X-ray images of these kernels for each
studied variety: Canadian, Kama, and Rosa.

However, sole visualization of the kernels did not provide quanti-
tative measures of shape parameters and their relations. In order to
carry out accurate grain traits measurements, the specialized image
processing package Grains (Niewczas and Wozniak, 1999; Strumillo
et al., 1999), which incorporates image processing algorithms, was
employed for measuring the particular characteristics of any selected
grain. Using the commands available in the program menu, automatic
boundary detection and diverse measurements relevant to the study
were enabled for each individual kernel. In our research, to evaluate the
factors affecting the grain differentiation, the following traits were
measured: the kernel area, kernel perimeter, compactness, asymmetry
coefficient, kernel length, kernel width, length of kernel groove, germ
area, germ length, and additionally the ratio between the germ length
and the kernel length, the ratio between the germ area and the kernel
area, as well the ratio between the kernel width and the kernel length.

Compactness is a shape descriptor computed according to the for-
mula:

= ×C π A
P

4 2 (1)

where A denotes the kernel area and P denotes the kernel perimeter.
The maximum value of the compactness is equal to one and is taken for
a circle. For values close to zero, the shape is increasingly elongated.

The asymmetry coefficient given by the formula

=

−

AC
A A

A
| |left right

(2)

is the ratio of two quantities: the absolute value of the difference be-
tween areas of the left and right part of a kernel, and the total area of
that kernel.

Finally, the obtained data incorporated twelve real-valued
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continuous grain characteristics. The main aim of our research is to
analyze their mutual relations and utilization in the classification pro-
cess.

2.2. The statistical techniques

The combined data, which contained the different parameters ex-
tracted from the images, was analyzed by way of applying two statis-
tical methods: principal component analysis and factor analysis. The
appropriate data analysis was performed using Statistica 10 software
(StatSoft, Poland), this having implemented advanced statistical
methods.

2.2.1. Principal component analysis
Principal component analysis is a multivariate technique which can

be used to transform a number of correlated variables into a small
number of independent variables called principal components, that
capture as much of the variability in the original variables as possible.

Suppose that a set of observable variables X= X1, X2,…, Xp is given.
Principal components are obtained as linear combinations of the ob-
served variables:

= + + …+Z a X a X a Xi i i ip p1 1 2 2 (3)

for = …i p1,2, , , where ai1, ai2, …, aip denote optimal weights of a prin-
cipal component Zi for observable variables X1, X2, …, Xp. Their com-
puting requires finding eigenvectors and eigenvalues from the covar-
iance matrix of the examined variables. Eigenvectors that correspond to
the largest eigenvalues are then used to reconstruct a large fraction of
the variance of the original data. The first principal component ac-
counts for the maximal amount of total variance in the observed vari-
ables. Each subsequent component accounts for a maximal amount of
variance in the observed variables that was not accounted for by the
preceding components, and is not correlated with the other compo-
nents.

The sum of the first k eigenvalues divided by the sum of all eigen-
values

+ +…+

+ +…+

×
λ λ λ
λ λ λ

100%k

p

1 2

1 2 (4)

represents the proportion of total variation explained by the first k
principal components. Similarly, the value defined as

+ +…+

×
λ

λ λ λ
100%i

p1 2 (5)

allows to determine the proportion of total variation explained by the i-
th principal component.

The number of components to retain are usually determined by
Kaiser or scree plotting methods. Finally, the original space has been
reduced to the space spanned by a few eigenvectors. In this work,
principal component analysis constitutes a variable reduction technique
that can be used as an exploratory data analysis tool.

2.2.2. Factor analysis
Factor analysis provides a mathematical model which can be em-

ployed to describe a collection of observed variables in terms of a
smaller collection of latent variables called factors. The basic assump-
tion is that intercorrelated variables have common factors running
through them, and that the aforementioned can be represented more
efficiently in terms of these reference uncorrelated factors.

Thus, consider a set of observable variables X= X1, X2,…, Xp. These
can be represented according to the system of linear equations

= + + …+ +X a F a F a F ei i i ir r i1 1 2 2 (6)

for = …i p1,2, , , where F= F1, F2, …, Fr are unobservable variables
called common factors, whilst aij denotes the factor loading of variable
Xi on factor Fj for = …j r1,2, , whilst ei is called a specific factor of Xi with
zero mean and finite variance δi. Given

= + + …+h a a ai i i ir1
2

2
2 2 (7)

for = …i p1,2, , , otherwise known as the contribution of r common

Fig. 1. Exemplary X-ray photograms of Canadian (a), Kama (b), and Rosa (c) wheat
kernels.
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factors on i-th variable, the value

= + + …+g a a aj j j pj1
2

2
2 2

(8)

for = …j r1,2, , , is the contribution of factor Fj for X. After extraction of
factorial loads of matrix, the matrix is generally followed by a rotation
of the factors that were retained to improve the opportunity of
achieving meaningful interpretation of each factor. Factor analysis was
used to explore and interpret underlying patterns and structure in our
data.

3. Results and discussion

The studied material was firstly subjected by image analysis to de-
termine twelve geometric traits. All measurements were made from a
total of 288 samples of three wheat varieties: Canadian, Kama, and
Rosa, containing 108, 72, and 108 kernels, respectively. Table 1 shows
the arithmetic mean, minimum and maximum values, as well as the
standard deviation for all estimated wheat traits, both separately for
each variety and combined.

The ANOVA results indicated significant differences between
Canadian, Kama and Rosa varieties. Average measurements, including
the kernel area, kernel perimeter, kernel length and kernel width, as
well as the ratio between the kernel width and the kernel length, were
significantly higher in Rosa, and significantly lower in the Canadian
variety. The Kama measurements fell between the values for Canadian
and Rosa varieties. The average length of the kernel groove, germ area
and germ length, were significantly higher for Rosa, in comparison with
the two other varieties, Canadian and Kama, which were not sig-
nificantly differentiated. The average asymmetry coefficient and the
average ratio between the germ area and the kernel area were sig-
nificantly higher in Canadian, and significantly lower in the Kama
variety. The compactness differentiated only the Canadian variety from
the other two varieties with significantly higher values. The average
ratio between the germ length and the kernel length significantly dif-
ferentiated only Canadian and Rosa varieties. No significant differences
were observed between Kama and Canadian, as well as Kama and Rosa
varieties. The Rosa variety was marked by greater variation than
Canadian and Kama varieties, with regard to the majority of studied
shape measurements.

For each variety, relatively high variation was observed for the
asymmetry coefficient, whereas relatively low variation was observed
for compactness (herein, the coefficient of variation was between 1.7%
and 2.8%).

The majority of the analyzed variables were significantly correlated.
The derived results revealed that all traits characterizing geometric
measures, including the kernel area, kernel perimeter, compactness,
kernel length, kernel width, length of kernel groove, germ area, and
germ length were significantly and positively correlated with each
other. The kernel area and kernel perimeter were the most perfectly
correlated. However, one is determined by the other and such measures
did not add any additional information.

Correlation coefficients of variables with each other are presented in
Table 2.

Furthermore, correlation coefficients between the kernel area and
other mentioned measures were very high (r values from 0.62 to 0.99).
Of course, the same results were noticed for the kernel perimeter (r
values from 0.56 to 0.99). However, the asymmetry coefficient had
significant negative correlations with these geometric measures (r va-
lues from −0.43 to −0.36). Indeed, the last three characteristics were
not always significantly correlated with investigated traits. The ratio
between the germ length and the kernel length and, consequently, the
ratio between the germ area and the kernel area, were not significantly
correlated with the kernel area, kernel perimeter, kernel length and
length of kernel groove. The correlation coefficients were close to zero
(r values from −0.08 to 0.12). The opposite results were observed for
the ratio between the kernel width and the kernel length (significant r
values from 0.24 to 0.57). The final evaluation based on simple corre-
lation coefficients alone cannot provide complete information on the
complex relations of the traits, but it does indicate the existence of
distinct structure in the data. Additionally, if the number of features is
too high, then it is beneficial to reduce the number of features through a
feature extraction technique. Hence, so as to take into consideration the
various advantages of multivariate statistical methods, principal com-
ponent analysis, as well as factor analysis, were used in the current
study.

Table 1
Basic statistics (mean, standard deviation SD, minimum, and maximum) for the estimated
traits of wheat.

Variable Variety* Mean SD Min Max

Kernel area (V1) C 12.07c 1.14 9.42 14.66
K 14.29b 1.23 11.23 17.08
R 19.01a 2.18 12.84 23.58
Total 15.23 3.46 9.42 23.58

Kernel perimeter (V2) C 13.33c 0.54 11.87 14.53
K 14.28b 0.58 12.63 15.46
R 16.40a 0.92 13.70 18.45
Total 14.72 1.53 11.87 18.45

Compactness (V3) C 0.85b 0.02 0.80 0.91
K 0.88a 0.02 0.84 0.92
R 0.89a 0.02 0.85 0.91
Total 0.87 0.02 0.80 0.92

Kernel length (V4) C 5.25c 0.20 4.62 5.76
K 5.50b 0.23 4.90 6.05
R 6.25a 0.39 5.32 7.24
Total 5.69 0.53 4.62 7.24

Kernel width (V5) C 2.89c 0.20 2.57 3.47
K 3.24b 0.18 2.85 3.68
R 3.75a 0.25 3.03 4.29
Total 3.30 0.43 2.57 4.29

Asymmetry coefficient (V6) C 5.04a 1.64 1.66 9.64
K 2.85c 1.43 0.77 8.50
R 3.46b 1.24 1.47 7.77
Total 3.90 1.71 0.77 9.64

Length of kernel groove (V7) C 5.13b 0.22 4.53 5.72
K 5.09b 0.26 4.52 5.88
R 6.10a 0.38 5.09 7.15
Total 5.48 0.57 4.52 7.15

Germ area (V8) C 1.77b 0.25 1.06 2.33
K 1.81b 0.29 1.25 2.60
R 2.64a 0.57 1.61 4.16
Total 2.11 0.58 1.06 4.16

Germ length (V9) C 1.61b 0.16 1.05 1.97
K 1.67b 0.15 1.32 2.10
R 1.85a 0.26 1.33 2.66
Total 1.71 0.22 1.05 2.66

Ratio of V8 to V1 (V10) C 0.15a 0.02 0.08 0.18
K 0.13c 0.02 0.09 0.16
R 0.14b 0.02 0.10 0.20
Total 0.14 0.02 0.08 0.20

Ratio of V9 to V4 (V11) C 0.31x 0.03 0.20 0.37
K 0.30y 0.02 0.25 0.36
R 0.29x 0.03 0.23 0.38
Total 0.30 0.03 0.20 0.38

Ratio of V5 to V4 (V12) C 0.55c 0.03 0.47 0.66
K 0.59b 0.03 0.53 0.67
R 0.60a 0.03 0.52 0.67
Total 0.58 0.04 0.47 0.67

* C – Canadian, K – Kama, R – Rosa; a, b, c – Means signed by the some letter differ not
significantly at alpha=0.01; x, y – Means signed by the some letter differ significantly at
alpha= 0.01.
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3.1. Principal component analysis

The results presented in the previous section, as well as the sig-
nificance generated by means of the Bartlett test, confirmed the
meaningfulness of principal component analysis. The method was car-
ried out on the basis of the correlation matrix. In Table 3, eigenvalues of
principal components and the percentage of the primary variable var-
iance carried by these, are shown.

According to the Kaiser criterion (which keeps any components that
has an eigenvalue greater than one), and evaluation of the scree plot-
ting (Cattell, 1996), three components were chosen for further analysis
(Fig. 2). These components all together accounted for 89.97% of the
total variability: the first component carried 56.56%, the second
24.66% and the third 8.75% of the variation.

Accurate interpretation of the components was possible by means of
factor loadings. On the basis of the values presented in Table 4, it may
be concluded that the first component was most positively correlated
with seven variables which constituted basic geometric measurements.
These were: the kernel area, kernel perimeter, kernel length, kernel
width, length of kernel groove, germ area, and germ length (loadings
greater than 0.7). Additionally, compactness and ratio between the
kernel width and the kernel length had loadings greater than 0.5. The
asymmetry coefficient had a negative loading equal to −0.438. A weak
correlation with the ratio between the germ length and the kernel
length, and the ratio between the germ area and the kernel area, was
consistent with the results obtained for the second component – which
was most negatively correlated with the above variables (loadings less
than −0.8). The second component is also mostly correlated with the
compactness and germ length, but the strength of the correlation was
worse, in comparison with the first component. The third component
was most negatively correlated with the compactness, the ratio between
the germ length and the kernel length, and the ratio between the kernel

width and the kernel length. Herein, the strength of the correlation was
moderate (loadings less than −0.4), in comparison with the first and
second principal components.

Thus, the first component could be viewed as a measure of shape,
whilst the second component carried information related mostly to the
characteristics describing ratios between measurements of germ and
kernel. The third component had lower absolute values of these three
loadings. It is worth noting that the distinguished variables were af-
fected in the same direction on the corresponding components. Table 5
shows the computed communalities which carried the total amount of
variance of the original variables, as explained by each component.

Table 2
A matrix of correlation coefficients for the estimated traits of wheat grains.

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11

V1 . . . . . . . . . . .
V2 0.99* . . . . . . . . . .
V3 0.62* 0.56* . . . . . . . . .
V4 0.96* 0.98* 0.42* . . . . . . . .
V5 0.97* 0.96* 0.76* 0.89* . . . . . . .
V6 −0.40* −0.39* −0.43* −0.36* −0.41* . . . . . .
V7 0.90* 0.92* 0.31* 0.96* 0.81* −0.25* . . . . .
V8 0.83* 0.84* 0.31* 0.84* 0.76* −0.22* 0.84* . . . .
V9 0.65* 0.66* 0.14* 0.72* 0.56* −0.23* 0.69* 0.86* . . .
V10 −0.08 −0.05 −0.45* 0.03 −0.16* 0.26* 0.12 0.49* 0.53* . .
V11 −0.08 −0.07 −0.25* −0.01 −0.12* 0.05 0.00 0.34* 0.69* 0.73* .
V12 0.57* 0.51* 0.95* 0.34* 0.73* −0.32* 0.24* 0.29* 0.08 −0.40* −0.25*

* Significant at the 0.01 level.

Table 3
Eigenvalues from PCA, and related statistics.

Value
number

Eigenvalue % of total
variation

Cumulative
eigenvalue

Cumulative %

1 6.788 56.565 6.788 56.565
2 2.960 24.663 9.747 81.228
3 1.050 8.746 10.797 89.974
4 0.802 6.685 11.599 96.659
5 0.290 2.418 11.889 99.076
6 0.056 0.469 11.945 99.545
7 0.037 0.307 11.982 99.851
8 0.010 0.081 11.992 99.933
9 0.005 0.045 11.997 99.978
10 0.001 0.012 11.999 99.990
11 0.001 0.007 12.000 99.997
12 0.000 0.003 12.000 100.000

Fig. 2. Scree plot showing eigenvalues in response to number of components for the
estimated variables.

Table 4
Factor loadings of the principal components for the estimated variables of wheat.

Variable PC1 PC2 PC3

Kernel area 0.989* 0.069 0.114
Kernel perimeter 0.982* 0.025 0.166
Compactness 0.637 0.601 −0.413
Kernel length 0.949* −0.105 0.263
Kernel width 0.971* 0.207 −0.023
Asymmetry coefficient −0.438 −0.264 0.341
Length of kernel groove 0.893* −0.188 0.360
Germ area 0.868* −0.436 −0.009
Germ length 0.717* −0.633 −0.187
Ratio of V8 to V1 0.008 −0.911* −0.138
Ratio of V9 to V4 0.037 −0.813* −0.532
Ratio of V5 to V4 0.581 0.593 −0.430

* Loadings in absolute value greater than 0.7.
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These values, besides the values corresponding to the asymmetry
coefficient, were very high.

Component scores were computed as linear combinations of the
observed variables weighted by eigenvectors. The first three compo-
nents took the form:

= + + + + −

+ + + + + +

PC V V V V V V

V V V V V V

0.380 0.377 0.244 0.364 0.373 0.168

0.343 0.333 0.275 0.003 0.014 0.223 ,
1 1 2 3 4 5 6

7 8 9 10 11 12

(9)

= + + − + − −

− − + − −

PC V V V V V V V

V V V V V

0.040 0.015 0.350 0.061 0.120 0.153 0.109

0.253 0.368 0.530 0.437 0.345 ,
2 1 2 3 4 5 6 7

8 9 10 11 12 (10)

= + − + − − +

− − − − −

PC V V V V V V V

V V V V V

0.111 0.162 0.403 0.257 0.023 0.333 0.351

0.009 0.183 0.135 0.519 0.420
3 1 2 3 4 5 6 7

8 9 10 11 12 (11)

The wheat grain data projection on the axes of the first three
principal components is presented in Fig. 3.

The first component was found to differentiate mostly between
Rosa, and Canadian and Kama combined. The second and third com-
ponents differentiated Canadian and Kama varieties.

3.2. Factor analysis

Factor analysis was performed by means of the principal compo-
nents method. Table 6 presents the factor loadings of matrix, as well as
an estimation of the number of factors.

In pursuance of the assumed criteria, a three–factors model was
fitted to the data. The factors rotation was done by way of varimax
rotation. Varimax rotation decreased the amount of variation that is
explained by the first two factors and increased the amount of variation
that is explained by the third factor.

A summary of high factor loadings for the estimated variables of
wheat is presented in Table 7. According to the obtained results, twelve
traits, subsequently divided into three comprehensive factors, explained
89.97 percent of the total variability in the dependent structure. The
share of each factor is 47.9%, 19.8% and 22.3% respectively.

The first factor, which accounted the greatest bulk of data variation,
had positive and very high loads for six traits: the kernel area, kernel
perimeter, kernel length, kernel width, length of kernel groove, and
germ area (loadings greater than 0.8). These could be regarded mainly
as the factor relating to basic shape measurements of a kernel.
Additionally, a moderate correlation was observed with the germ
length (the positive load equal to 0.668) and a weak correlation with
the ratio between the germ area and the kernel area and ratio between
the germ length and the kernel (the absolute values of loadings less than
0.1). These were consistent with the results obtained for the second
factor, which included higher loads with these traits, equaled to 0.707,
0.968 and 0.813, correspondingly. This could be regarded primarily as

the factor relating to the ratio between germ and kernel. The third
factor included compactness and the ratio of kernel width to kernel
length, and showed both high and positive loads, equaled to 0.902 and

Table 5
Cumulative % of variation explained by way of the principal components for the esti-
mated variables of wheat.

Variable PC1 PC2 PC3

Kernel area 0.978 0.983 0.996
Kernel perimeter 0.965 0.966 0.993
Compactness 0.406 0.767 0.938
Kernel length 0.901 0.912 0.982
Kernel width 0.942 0.985 0.985
Asymmetry coefficient 0.192 0.262 0.378
Length of kernel groove 0.798 0.833 0.962
Germ area 0.753 0.943 0.943
Germ length 0.514 0.916 0.951
Ratio of V8 to V1 0.000 0.830 0.849
Ratio of V9 to V4 0.001 0.662 0.946
Ratio of V5 to V4 0.337 0.689 0.874

Fig. 3. 3D scatterplots of component scores for three wheat varieties: Canadian (a), Kama
(b), and Rosa (c).

M. Charytanowicz et al. Computers and Electronics in Agriculture 144 (2018) 260–268

265



0.886 correspondingly. This also revealed a negative correlation with
the asymmetry coefficient (the load equaled to −0.575). The afore-
mentioned final factor could be regarded as the factor relating to the
additional measures based on the basic geometric traits of any kernel.

The obtained results demonstrated the importance of all examined
shape descriptors in wheat variety classification. These traits besides
the asymmetry coefficient, had very high communalities. Similarly, all
loadings besides the asymmetry coefficient, were very high.
Subsequently, based on factor score coefficients, factor scores were
calculated and analyzed in relation to wheat classification. These fac-
tors took the form:

= + − + + + +

+ + − − −

F V V V V V V V

V V V V V

0.172 0.193 0.107 0.233 0.109 0.088 0.268

0.134 0.056 0.005 0.158 0.121 ,
1 1 2 3 4 5 6 7

8 9 10 11 12 (12)

= − − + − − − −

+ + + + +

F V V V V V V V

V V V V V

0.064 0.081 0.078 0.100 0.026 0.126 0.132

0.139 0.289 0.324 0.517 0.088 ,
2 1 2 3 4 5 6 7

8 9 10 11 12 (13)

= − − + − + − −

− + − + +

F V V V V V V V

V V V V V

0.002 0.046 0.433 0.139 0.115 0.307 0.223

0.025 0.047 0.084 0.201 0.439 .
3 1 2 3 4 5 6 7

8 9 10 11 12 (14)

Fig. 4 presents 3D scatterplots of factor scores for each wheat variety.
The first factor distinctly differentiated Rosa, from Canadian and Kama
combined. The third factor was found to differentiate mostly between
the Canadian and Kama varieties. Herein, the Rosa variety was better
differentiated, whilst Kama and Canadian varieties were less success-
fully distinguished.

4. Final remarks and summary

Computer vision-based systems, along with data analysis procedures
based on classical statistical methods or computation intelligence can

Table 6
Rotated factor loadings and communalities C for the estimated variables of wheat.

Variable F1 F2 F3 C

Kernel area 0.926* 0.001 0.372 0.999
Kernel perimeter 0.948* 0.005 0.307 0.998
Compactness 0.312 −0.164 0.902* 0.963
Kernel length 0.978* 0.048 0.150 0.999
Kernel width 0.832* −0.032 0.540 0.999
Asymmetry coefficient −0.215 −0.041 −0.575 0.411
Length of kernel groove 0.980* 0.052 0.011 0.944
Germ area 0.845* 0.463 0.118 0.994
Germ length 0.668 0.707* 0.067 0.998
Ratio of V8 to V1 0.093 0.813* −0.423 0.983
Ratio of V9 to V4 −0.057 0.968* −0.077 0.996
Ratio of V5 to V4 0.256 −0.154 0.886* 0.997

Total 5.747 2.370 2.679 10.797
Proportion 0.479 0.198 0.223 0.899

* Loadings greater than 0.7.

Table 7
Summary of factor loadings for the estimated variables of wheat.

Variable Loading % of the total variability

Factor 1 5.747 47.9%
Kernel area 0.926
Kernel perimeter 0.948
Kernel length 0.978
Kernel width 0.832
Length of kernel groove 0.980
Germ area 0.845

Factor 2 2.370 19.8%
Germ length 0.707
Ratio of V8 to V1 0.813
Ratio of V9 to V4 0.968

Factor 3 2.679 22.3%
Asymmetry coefficient −0.575
Compactness 0.902
Ratio of V5 to V4 0.886

Fig. 4. 3D scatterplots of factor scores for three wheat varieties: Canadian (a), Kama (b),
and Rosa (c).

M. Charytanowicz et al. Computers and Electronics in Agriculture 144 (2018) 260–268

266



be successfully exploited for classification tasks (Forczmański and
Markiewicz, 2013, 2016; Hu et al., 1998; Sabanci et al., 2017). The
conducted research has shown the usefulness of the main geometric
features of three wheat varieties: Kama, Rosa and Canadian in such
problems. Thus, in works (Charytanowicz et al., 2010; Kulczycki et al.,
2012), the complete gradient clustering algorithm using nonparametric
kernel estimation (Kulczycki, 2008; Silverman, 1986; Wand and Jones,
1994) was proposed. The main idea of this algorithm assumed that each
cluster was identified by the local maxima of the kernel density esti-
mator of the data distribution. The whole procedure did not need strict
assumptions regarding the desired number or shape of clusters. This
allowed the number obtained to be better suited to a real data structure.
The number of correctly classified grains was, in order, 96%, 84%, 96%
for Kama, Rosa and Canadian varieties (respectively), giving almost
92% of the total properly classified objects. The above results were
comparable to that of the classic K-means method, although in this case,
it did require additional correct information regarding the number of
clusters. Furthermore, the study carried out in work (Charytanowicz
et al., 2016) on an enlarged set of wheat grain geometric features,
confirmed the positive properties of the proposed methodology. This
gave a classification rate of 89–96%. The kernel perimeter, and, sub-
sequently, the ratio between the germ length and kernel length, as well
as the ratio between the germ area and the kernel area, were estab-
lished as being most important in discrimination. The paper (Kulczycki
and Łukasik, 2014) deals with the algorithm of reducing the dimension
and size of a data set for the domain's fundamental tasks of exploratory
data analysis. Among these tasks are clustering, classification and de-
tection of atypical elements. In numerical experiments, the classifica-
tion procedure, realized through applying the nearest neighbor algo-
rithm, reached a 90% rate of classification for the initial space of wheat
grains. Satisfactory results of classification of this data set were also
obtained when the classifier based on probabilistic neural networking
was used. In the article (Kowalski and Kusy, in press), the classification
correctness of the probabilistic neural network with both full and re-
duced structure were calculated. These gave test quality values between
0.90 and 0.93.

In our research, the structure of various wheat grain morphological
traits was studied to determine the factors which best explain the
variability in the dataset. The result of such work is that the data, which
initially incorporated twelve geometrical variables, has been reduced to
a three-dimension model which justified 89.97% of the data variation
as a whole. The first factor can be regarded mainly as the factor relating
to the kernel's basic shape measurements. This factor accounts the
greatest bulk of data variation and has positive and very high loads for
six traits: the kernel area, kernel perimeter, kernel length, kernel width,
length of kernel groove, and germ area The second factor is considered
primarily as the factor relating to the ratio between germ and kernel.
The third factor makes reference to additional measurements based on a
kernel's basic geometric traits. All traits, besides the asymmetry coef-
ficient, have very high communalities.

The study also discussed the importance of grain size and shape in
the wheat varieties classification process. The results indicated sig-
nificant differences between Canadian, Kama and Rosa varieties.
Herein, average kernel measurements of the Rosa variety were sig-
nificantly higher, in comparison to the Canadian and Kama varieties. Of
note: the Rosa variety was better recognized, whilst the Canadian and
Kama varieties were less successfully differentiated.

Summarizing, the multivariate statistical methods used in this work
revealed the importance of the considered traits in the reliable analysis
of wheat grains. The proposed basic geometric features constitutes a
crucial set of parameters with respect to wheat grain morphology which
best differentiate wheat varieties. The presented methodology com-
bining image analysis and statistical methods supported reliable dis-
crimination of the wheat varieties as regards their shape descriptors,
and it allowed nondestructive and automatic feature detection. The
conducted study confirmed the practical usefulness and effectiveness of

the evolved method in classification practices. It should be underlined,
however, that the study was conducted as a practical trial so as to
clarify the relationship between the traits.
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